
Relativity Module  
Student Guide 

 

Concepts of this Module 

 

 Events that can cause other events 

 Synchronising clocks 

 Simultaneity 

 Time dilation and inertial reference frames 

 Rigid bodies and relativity 

 Tachyons 

 Geometric approaches to relativity 

 Photons and relativity 

 Mass-energy equivalence 

 The Equivalence Principle 

 Geometry 

 

The Activities 

 

Activity 1 

 

Event 1 occurs at x = 0 and t = 0. 

 

A. Event 2 occurs at x = 1200 m and is caused by Event 1. When is the earliest that 

Event 2 can occur. Explain. 

B. Event 0 occurred at x = -4,000 m at time t = -1.0 s. Could Event 0 have caused 

Event 1? Explain. 

 

 

 

Activities 2 and 3 refer to the following situation. 

 

Assume Toronto and Montreal are exactly 510 km apart in the Earth frame of reference. 

Assume that Kingston is exactly half way between Toronto and Montreal. They are all, of 

course, stationary relative to each other and the Earth. Ignore any effects due to the 

Earth’s rotation on its axis. Ignore any effects due to the Earth’s gravitational field. 

Assume the surface of the Earth is flat. Assume that the speed of light in the air is exactly 

equal to c. 
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A powerful searchlight is on top of the CN Tower in Toronto, pointed towards Montreal. 

A second searchlight is on top of 1000 de La Gauchetière in Montreal, pointed towards 

Toronto. Initially the two searchlights are turned off. Assume that both the CN Tower and 

1000 de La Gauchetière are visible from each other and from any point between Toronto 

and Montreal.  

 

There are also two identical atomic clocks with an accuracy of at least 1 s, one on top of 

the CN  Tower and the other on top of 1000 de La Gauchetière. 

 

 

Activity 2 

 

 

A. You are stationary in Kingston. With two powerful telescopes you are looking at 

the two clocks. You see that they read the same time. Are the clocks 

synchronized? If yes, explain. If no, which clock is ahead and by how much? 

B. You are on top of the CN Tower right beside its clock. With a powerful telescope 

you look at the clock in Montréal, and see that it reads exactly the same time you 

see on the clock on the CN Tower. Are the clocks synchronized? If yes, explain. 

If no, which clock is ahead and by how much? 

C. You are on top of 1000 de La Gauchetière right beside its clock and see that it 

reads a time of 12.000000 s. With a powerful telescope you simultaneously look 

at the clock in Toronto. If the two clocks are synchronized, what time should you 

see the Toronto clock read? 

 

Activity 3 

 

 

A. You are in a rocket ship traveling from Toronto to Montreal at 0.8 c relative to the 

Earth. For you what is the distance between Toronto and Montreal? For you what 

is the distance between Toronto and Kingston? 

B. The two searchlights on the CN Tower in Toronto and 1000 de La Gauchetière in 

Montreal are quickly turned on and off, both emitting flashes of light. For you, 

the two flashes were emitted simultaneously. Imagine you are right beside the 

CN Tower when its light is turned on. You see the flash from the searchlight on 

the CN Tower instantaneously. Sketch the two flashes of light, from the CN 

Tower and from 1000 de La Gauchetière, a very brief moment after they are 

emitted, indicating their speeds and the distance between them for you. How long 

before you see the flash from the searchlight on 1000 de La Gauchetière? Be sure 

to clearly indicate how you arrived at your answer. 

C. Another member of your Team also is in a rocket flying at 0.8 c from Toronto to 

Montreal. What is your Teammate’s speed relative to you? Imagine your 

Teammate is just over Kingston when the flashes are emitted. Are the two flashes 

of light emitted simultaneously for your Teammate? Will he/she see the flashes 
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simultaneously? If yes, how long after the flashes will he/she see them? If no, 

which flash will he/she see first and by how much? You may find it useful to add 

your Teammate to your sketch from Part B. 

D. Your Instructor has gone to Kingston, and is stationary relative to Kingston and 

the Earth. What is your Instructor’s speed relative to you? Will your Instructor see 

the flashes from the two searchlights of Part B simultaneously? If no, which flash 

will he/she see first and by how much as measured by you? Explain. You may 

find it useful to add your Instructor to the sketch from Parts B and C. 

E. Imagine your Instructor has a cassette player that will begin playing when it 

receives a flash of light, and quits when it receives a second flash of light. Is there 

any music? Does the tape move? Do you hear any music? Does your Instructor 

hear any music? 

 

Activity 4 

 

George and Helen are twins, born at the same time (a biological impossibility). George 

stays at home on Earth, which we assume is a good inertial reference frame. Helen is an 

astronaut who blasts off for a distant star, travels to the star at high speed, and then turns 

around and returns to Earth. After she lands on Earth she will be younger than George 

 

A. Draw a spacetime diagram for a reference frame stationary relative to George. 

Include George’s worldline and Helen’s worldline. What can you conclude about 

the relation between the length of the two worldlines and which twin ends up 

younger? 

B. Draw a spacetime diagram for an inertial reference frame in which Helen is 

stationary during her trip from Earth to the distant star. Include George’s 

worldline and Helen’s worldline. What can you conclude about the relation 

between the length of the two worldlines and which twin ends up younger? Is this 

consistent with your conclusion from Part A? 

C. Do you think this is a general result: that when analysed from any inertial 

reference frame Helen’s worldline is longer than George’s, and she will end up 

younger than George? 

 

Activity 5 

 

In 1971 Hafele and Keating tested the predictions of the Theories of Relativity by flying 

cesium beam atomic clocks around the world on regularly scheduled commercial airline 

flights. One clock remained in their laboratory outside Washington DC, one was flown to 

the East, and the other to the West. They got the data on speeds and altitudes of the 

planes flying the Eastbound and Westbound clocks from the flight recorders. 

 

When the got all three clocks back in the laboratory they compared the measured times. 

Here are the predicted and experimental results for the elapsed times compared to the 

clock that stayed in the laboratory. 
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  Eastbound clock (ns)  Westbound clock (ns)  

Special Relativity prediction  lose 184 ± 18 gain 96 ± 10 

General Relativity prediction gain 144 ± 14  gain 179 ± 18  

Total predicted effect  lose 40 ± 23  gain 275 ± 21  

Measured lost 59 ± 10  gained 273 ± 7  

 

The Special Relativity prediction is because that theory predicts that moving clocks run 

slowly. The General Relativity prediction is because that theory predicts that clocks in 

gravitational fields run slowly. 

 

A. Why does Special Relativity predict that the Eastbound clock gains time and the 

Westbound clock loses time? Shouldn’t they both either gain time or lose time? 

B. Do the predicted effects agree with the experimental data? Explain. 

C. Are the calculated errors in the total predicted effect correct? How were these 

errors calculated? 

 

 

Activity 6 

 

 

 

We have a 25 m long pole and 

a 20 m long barn, both as 

measured at rest relative to the 

pole and the barn. We will 

assume the back wall of the 

barn is very very strong. 

 

 

If the pole is moving towards 

the barn at 70% of the speed of 

light, its length will be 

contracted to about 18 m. Thus 

it clearly fits in the barn, and 

we can slam the door shut (and 

run!). 
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But if we are riding along 

with the pole, its length is not 

contracted and is 25 m long. 

But the barn is contracted and 

is now about 14 m long. 

Clearly the pole does not fit 

in the barn. 

 

Does the pole fit into the barn or not? Explain. 

 

Activity 7 

 

For a long time people interpreted the Special Theory of Relativity to mean that nothing 

can travel faster than the speed of light. In 1967 Feinberg showed that this is not correct. 

There is room in the theory for objects whose speed is always greater than c. Feinberg 

called these hypothetical objects tachyons; the word has the same root as, say, 

tachometer. Attempts have been made to observe tachyons: so far all such experiments 

have failed. 

 

A. The relation between energy E and mass m for an object traveling at speed u 

relative to us is given by: 

22

2

/1 cu

mc
E


  

If the energy of a tachyon is a real number, what kind of number must its mass m 

be? 

B. Draw energy versus speed axes with the speed going from 0 to 5 c. Sketch the 

relation between the energy E and speed u for an ordinary object. On the same 

plot sketch the relation between E and u for a tachyon. For ordinary objects we 

say: “It takes infinite energy to speed the object up to a speed equal to the speed 

of light.” What is the equivalent statement for a tachyon? For ordinary objects we 

can also say: “The minimum value of the energy is when it is at rest, and has a 

value equal to mc
2
.” What is the equivalent statement for a tachyon? 

C. A tachyon is produced by some apparatus in the laboratory at x = 0 at t = 0 and 

travels at ux = 20 c in the +x direction to a detector at x = 1,000 m. You are 

traveling at v = 0.1 c in the +x direction relative to the laboratory. The formula for 

addition of velocities is: 
2/1

'
cvu

vu
u

x

x
x




 . What is the speed of the tachyon 

relative to you? 

D. For Part C describe in words what you see the tachyon doing. What does this say 

about the tachyon being produced by some apparatus causing its later detection by 

the detector. 
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Activity 8 

 

Sue and Lou are moving relative to each other at speed v. We can relate their spacetime 

diagrams as shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above diagram: 

c

v
)tan(  

 

Similar to the Parable of the Surveyors, the axes are rotated relative to each other, but 

they are rotating in opposite directions. Also shown in yellow is the worldline for light 

traveling at c relative to both Sue and Lou. 

 

You will be using this diagram below, and may find it useful to print a few copies of it to 

staple into your lab book. 

 

A. Explain how the diagram shows that the speed of light is the same value for both 

Sue and Lou. 

B. Place two dots on the diagram representing the positions and times of two events 

that are simultaneous for Lou. Are the two events simultaneous for Sue? If no, 

which event occurs first? Place two more dots on the diagram representing the 
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positions and times of two events that are simultaneous for Sue. Are the two 

events simultaneous for Lou? If no, which event occurs first? 

C. Sketch the worldline of an object that is stationary relative to Lou. What is the 

direction of motion of the object relative to Sue? Explain. 

D. Sketch the worldline of an object moving at some speed u < c relative to Lou. 

Show geometrically that the object is moving at speed u’ < c relative to Sue. 

E. Activity 6 introduced tachyons, objects whose speed is always greater than the 

speed of light. Draw the worldline of a tachyon moving at some speed u > c 

relative to Lou. Show geometrically that the direction of motion of the tachyon for 

Sue, u’, can be negative but with a magnitude > c. 

 

Activity 9 

 

As you may know, in some circumstances we can treat light as a particle called a photon. 

 

A. Relativistic time dilation means that an unstable particle which decays in time  

when it is rest relative to some observer will live a longer time t for an observer 

for whom it is moving with speed v where: 

 










22 /1 cv
t  

 

If you apply this formalism to a photon, what does it predict about its lifetime 

relative to any observer? 

B. The relation between energy E and mass m for an object traveling at speed u 

relative to us is given by: 

22

2

/1 cu

mc
E


  

 

A photon has a real non-zero energy. What does this equation say about the value 

of its mass m? What do you think your high school math teacher would say about 

your answer? 
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Activity 10 

 

Four elementary particles, an electron, a muon, a proton, and a neutron have the rest 

energies and relativistic total energies as shown. 

 

Particle Rest energy Total energy 

Electron 0.511 MeV 0.511 Mev 

Muon 106MeV 212 MeV 

Proton 938 MeV 4,690 MeV 

Neutron 940 MeV 2,820 MeV 

 

Rank in order from the largest to the smallest the particle’s speeds. 

 

Activity 11 

 

 

In Jules Verne’s From the Earth to the Moon (1865) 

a huge cannon fires a projectile at the moon. Inside the 

projectile was furniture, three people and two dogs. 

The figure is from the original edition. 

 

Verne reasoned that at least until the projectile got 

close to the Moon it would be in the Earth’s 

gravitational field during its journey. Thus the people 

and dogs would experience normal gravity, and be able 

to, for example, sit on the chairs just as if the projectile 

were sitting on the Earth’s surface. 

 

One of the dogs died during the trip. They put the 

dog’s body out the hatch and into space. The next day 

the people looked out the porthole and saw that the 

dog’s body was still floating just beside the projectile. 

 

A. Is there a contradiction between the inhabitants inside the projectile experiencing 

normal gravity and the dog’s body outside the projectile not falling back to the 

Earth? 

B. If your answer to Part A is yes, where did Verne make his mistake? If your 

answer is no, explain. 
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Activity 12 

 

A bucket of water has a spring soldered to the bottom, as 

shown. A cork is attached the spring, and is therefore 

suspended under the surface of the water. 

You are on top of the CN tower, holding the bucket, and step 

off. While falling towards the ground, do you see the cork 

move towards the top of the water, towards the bottom of the 

bucket, or stay where it is relative to the bucket and the water? 

Explain your answer using Einstein’s Equivalence Principle. 

 

 

 

Activity 13 

 

As you know, according to plane geometry the circumference C0 of a circle is related to 

its radius r according to: 

 

rC 20   

 

Imagine we have a wheel of radius r whose circumference when 

it is stationary is C0. But the wheel is rotating with constant 

angular velocity . According to Special Relativity, the rim of 

the wheel will be contracted. Assume the rim has negligible 

thickness. 

 

A. Will the length of the spokes of the wheel be contracted 

too? Explain. 

B. What is the circumference C of the wheel according to 

Special Relativity? Express your answer in terms of the 

centripetal (radial) acceleration a of each point on the rim. 

C. Following Einstein, we say that the geometry of the rotating wheel is not the 

geometrical equation given above. Express the difference in the geometries of the 

rotating and non-rotating wheel, i.e. C – C0. 
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Activity 14 

 

The word geometry literally means the measure of the Earth. As you know, according to 

plane geometry the sum of the angles of a triangle is 180º. 

 

A. Assume the Earth is a perfect smooth sphere. Imagine you construct a triangle on 

the surface of the Earth. What is the sum of the angles of this triangle? You may 

wish to consider an isosceles triangle with the apex at the North Pole and the base 

along the equator. 

B. From Part A, you may have discovered that geometry on a spherical surface is 

different than the geometry on a plane.  To describe the geometry around a 

massive object, which geometry is the best bet to be correct? Explain. 

 

 
This Student Guide was written by David M. Harrison, Dept. of Physics, Univ. of Toronto in January 2009. 

 

Activity 3 is based on Rachel E. Scherr, Peter S. Shaffer, and Stamatis Vokos, “The challenge of changing 

deeply held student beliefs about the relativity of simultaneity,” American Journal of Physics 70 (12), 

December 2002, 1238 – 1248. 

 

I learned about the geometric approach to Special Relativity of Activity 8 from Edwin F. Taylor and John 

Archibald Wheeler, Spacetime Physics (W.H. Freeman, 1963). This classic is highly recommended. 

 

Activities 1, 7 and 9 also appear in David Harrison and William Ellis, Student Activity Workbook that 

accompanies Hans C. Ohanian and John T. Markert, Physics for Engineers and Scientists, 3
rd

 ed. (W.W. 

Norton, 2007). 

 

Activities 11 and 12 also appear in Mechanics Module 3. 
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