
Waves Module 1 
Student Guide 

 

Concepts of this Module 

 

 Traveling waves 

 Intensity 

 Reflection 

 Superposition 

 Beats 

 Standing Waves 

 

Activity 1 

 

A. Open the Java applet wave-on-a-string.jar which is at: Feynman:Public/Modules/Waves.  

 

 



 

 

 Set the Damping to 0 

 Set the wave type to “Pulse” 

 Set the end to “No  End” which will replace the vise on the right side with an open window for the 

waves to go through. 

 

Click on the Pulse button that will appear. Imagine you are standing right beside the window as the pulse 

goes out of it, measuring the displacement as a function of time as it goes by you. Sketch the displacement 

as a function of time. 

 

B. Click on the Rulers control in the upper-right corner of the simulation. The rulers that appear can be moved 

with the mouse. Estimate the speed, width and amplitude of the wave pulse. Add labeled tick marks on the 

axes of the sketch of Part A. 

 

This is a good time to experiment with different values of the Damping and tension. What happens as the 

Damping is increased? What happens as the tension in the string is decreased? You may wish to explore 

some of the other settings of the simulation too. 

 

C. The triangular pulse of Parts A and B was 

symmetric. Here is a plot of an asymmetric 

triangular pulse traveling from left to right. At the 

moment shown the time t = 0. The wave is 

traveling with a speed of 0.5 m/s. Sketch the 

displacement of the pulse at x = 0 as a function of 

time t as the pulse goes by. Include labeled tick marks on both the y and t axes. 

 

D. Here is the same triangular pulse as Part B, but 

it is traveling from right to left at 0.5 m/s. At 

the moment shown the time t = 0.  Sketch the 

displacement of the pulse at x = 0 as a function of 

time t as the pulse goes by. Include labeled tick 

marks on both the y and t axes. Compare to 

the sketch from Part C.  

E. Here is a sinusoidal wave pulse traveling from left to right at v = 0.5 m/s. At the moment shown t = 0. 

Sketch the displacement of the pulse at x = 0 as 

a function of time t as the pulse goes by. 

Include labeled tick marks on both the y and t 

 of the pulse? From axes. What is the wavelength 

your sketch what is the period T, frequency 

f, and angular frequency  of the sinusoidal pulse? 

, fand v? What is the relation between 

 

F. Here is a sinusoidal wave pulse traveling from 

right to left at v = 0.5 m/s. At the moment shown t 

= 0. Sketch the displacement of the pulse at x = 0 

as a function of time t as the pulse goes by. 

Include labeled tick marks on both the y and t 

 of the pulse? axes. What is the wavelength 

From your sketch what is the period T, frequency f, and angular frequency  of the sinusoidal pulse? What 



is the relation between , fand v? 

 

G. Here is a sine wave traveling from left to right 

with v = 0.5 m/s. The wave extends to 

infinity in both directions along the x axis. At the 

moment shown the time t = 0. At the moment 

shown the displacement as a function of 

position is:  
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factor 2 in the In your own words, explain the 

above equation. We can describe the displacement 

as the wave passes x = 0 either as 
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is correct? Explain your own words. Write down a form of ),( tx  which is valid for all values of x and t. 

You may find the following Flash animation useful in visualizing this situation: 

 
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/TravelWaves/TravelWaves.html 

 

The above link is to a fixed size animation which works nicely if only one person is viewing it. If more than 

one person is viewing the animation, a version which can be resized is better. Here is a link to a resizable 

version of the same animation: 

 
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/TravelWaves/TravelWaves.swf 

 

 

 

Activity 2 

 

Here is a link to a simple little Flash animation of a plane wave traveling through two different mediums: 

 
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Waves/TwoMediums/TwoMediums.html 

 

Here is a link to a resizable version of the same animation, which is nicer if more than one person is trying to view 

it: 

 
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Waves/TwoMediums/TwoMediums.swf 

 

Open one of the versions of the animation. 

 

A. At what rate do the wave fronts from the left strike the medium in the centre? What is the period, frequency, 

and angular frequency of the wave to the left of the medium in the centre? 

B. For the medium in the centre, at what rate do the wave fronts leave the left-hand side? Is this the same as 

your answer to Part A? Explain. Do the wave fronts strike the right side of the medium in the centre at this 

same rate? What is the period, frequency, and angular frequency of the wave while it is traveling through the 

medium in the centre? 

C. Click on the Show Ruler checkbox, and measure the wavelength of the wave traveling from the left to the 

medium in the centre. Measure the wavelength of the wave while it is traveling through the medium in the 

centre. Compare the ratio of the wave speed to the wavelength for these two cases. Explain your result. 

http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/TravelWaves/TravelWaves.html
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/TravelWaves/TravelWaves.swf
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Waves/TwoMediums/TwoMediums.html
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Waves/TwoMediums/TwoMediums.swf


D. The wave leaves the medium in the centre and travels off to the right. How do the period, frequency, angular 

frequency, and wavelength of the wave traveling to the right of the medium in the centre compare to the 

same quantities for the waves in the other regions? 

 

Activity 3 

 

In Activity 2 the waves strike the interface between the two mediums straight on, with zero angle of incidence. Here 

is a link to a Flash animation where the angle of incidence is not zero. 

 

http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Waves/Refraction/Refraction.html 

 

Here is a link to a resizable version: 

 

http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Waves/Refraction/Refraction.swf 

 

Open one of the versions of the animation. 

A. At what rate do the wave fronts from the left strike the medium in the centre? Is the rate the same regardless 

of what vertical position you are considering? What is the period, frequency, and angular frequency of the 

wave to the left of the medium in the centre? 

B. For the medium in the centre, at what rate do the wave fronts leave the left-hand side? Is this the same as 

your answer to Part A? Explain. Do the wave fronts strike the right side of the medium in the centre at this 

same rate? What is the period, frequency, and angular frequency of the wave while it is traveling through the 

medium in the centre? 

C. How does the wavelength of the wave traveling from the left to the medium in the center compare to the 

wavelength of the wave while it is traveling through the medium in the centre? Show how you arrived at 

your answer. 

D. The wave leaves the medium in the centre and travels off to the right. How do the period, frequency, angular 

frequency, and wavelength of the wave traveling to the 

right of the medium in the centre compares to the 

same quantities for the waves in the other regions? 

E. The figure to the right shows a portion of two wave fronts 

between 1 and of the animation. What is the relation 

2? Notice that there are two right triangles in the 

figure with a common hypotenuse. 

 

 

Activity 4 

 

Here is a Flash animation of a molecular view of a sound wave traveling through the air: 

 

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/long_wave.html 

 

The above link is to a fixed size animation which works nicely if only one person is viewing it. If more than one 

person is viewing the animation, a version which can be resized is better. Here is a link to a resizable version of the 

same animation: 

 

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/long_wave.swf 

 

http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Waves/Refraction/Refraction.html
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Waves/Refraction/Refraction.swf
http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/long_wave.html
http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/long_wave.swf


Open one of the versions of the animation. 

 

A. The bottom shows the motion of the air molecules. You may wish to imagine that the molecules are 

connected to their nearest neighbors by springs, which are not shown. There is a wave of increasing and 

decreasing density of the molecules. Is the wave moving to the right or to the left? Explain. Is the wave 

longitudinal or transverse? Explain. 

B. Often instead of describing the wave as one of density we talk about a pressure wave. Does the higher 

density of molecules correspond to higher or lower pressure? Can you explain? 

C. The top shows the displacement of the molecules from their equilibrium positions. It too is a wave, often 

called a displacement wave. Is the wave moving to the right or to the left? Explain. Is the wave 

longitudinal or transverse? Explain. 

D. Use the step controls, pause the animation and position molecules 3 and 9 at their equilibrium position 

with molecule 6 at maximum displacement. The amplitude of the displacement wave is zero for 

molecules 3 and 9. Is the amplitude of the pressure wave at the position of molecule 3 also zero, or is it a 

maximum or a minimum? What about the pressure wave at the position of molecule 9? 

E. Use the step controls to position molecules 3 and 9 at their equilibrium position with molecule 6 at 

minimum displacement. Is the amplitude of the pressure wave at the position of molecule 3 zero, or is it 

a maximum or a minimum? What about the pressure wave at the position of molecule 9? 

F. From your results for Parts D and E, what is the phase angle between the pressure wave and the 

displacement wave? 

Activity 5 

 

A. Open the Java applet wave-on-a-string.jar which is at: Feynman:Public/Modules/Waves. 

Part A of Activity 1 shows a screen shot of the applet. 

 

 Set the Damping to 0 

 Set the wave type to “Oscillate” 

 Set the end to “No  End” which will replace the vise on the right side with an open window for the 

waves to go through. 

 

How does the amplitude of the wave change as it propagates down the string? Is this a one dimensional, two 

dimensional, or three dimensional wave? You may wish to look over Parts B and C before answering this 

question. 

 

B. A two dimensional wave, such as a water wave, is propagating away from its source equally in all 

directions. Assume damping is negligible. How does the amplitude of the wave change with distance from 

the source? 

C. A three dimensional wave, such as a sound wave, is propagating away from its source equally in all 

directions. Assume damping is negligible. How does the amplitude of the wave change with distance from 

the source? 

D. What physical principle or conservation law gives the answers to Parts A – C? Explain 

 

 

 

 



Activity 6 

 

A. Open the Java applet wave-on-a-string.jar which is at: Feynman:Public/Modules/Waves. 

Part A of Activity 1 shows a screen shot of the applet. 

 

 Set the Damping to 0 

 Set the wave type to “Pulse” 

 Leave the end in its default state of “Fixed End” which clamps the right side of the string with a C-

clamp. 

 

Click on the Pulse button. What is the behavior of the wave pulse when it is reflected by a fixed end? 

B. Change the end of the string to “Loose End” which terminates the right hand side of the string with a 

frictionless loop around a vertical rod. Click on Reset and then on Pulse. What is the behavior of the wave 

pulse when it is reflected by a free end? 

C. Set the end of the string back to “Fixed End,” click on Reset and then on Pulse. Use the pause/play button 

and then the step one to step the wave pulse through a complete reflection at one end of the string. There is a 

point where the wave pulse nearly disappears. Where did the wave go? Where did the wave’s energy go? 

Explain what is happening. 

D. Set the end of the string back to “Loose End,” click on Reset and then on Pulse. Click on the Rulers control 

in the upper-right corner of the simulation. The rulers that appear can be moved with the mouse. Measure 

the maximum amplitude of the wave pulse; you may already have done this measurement in Activity 1 Part 

B. Use the pause/play button and then the step one to step the wave pulse through a complete reflection at 

one end of the string. There was a point where the amplitude of the wave at the position of the free end was 

large. Use the ruler to estimate its amplitude. Explain your result. 

E. Set the end of the string back to “Fixed End.” Set the Damping to 10. Set the wave type to “Oscillate” and 

click on Reset. You will see a “standing wave” on the right hand side of the string. Use the pause/play 

button and then the step one to step the wave pulse through a complete reflection at the right end of the 

string. There is a point where the wave pulse near the right hand side nearly disappears. Where did the wave 

go? Explain what is happening. 

F. Set the end of the string back to “Loose End,” click on Reset. You will once again see a “standing wave” on 

the right hand side of the string. Is there a difference between this standing wave and the one you saw in Part 

E? Explain. Is there a point where the wave displacement near the right hand side nearly disappears, as in 

Part E? Explain. 

G. Set the end of the string back to “Fixed End.” Leave the wave type as “Oscillate.” Set the Damping to 0. 

Click on Reset. What happens? Explain. 

 

Although we have used the wave on a string applet in Activities 1, 5, and now here, there is still lots more Physics 

that you can learn from it. You are invited to explore further. 

 

 



Activity 7 

 

“Music is a hidden practice of the soul, that does 

 not know it is doing mathematics.” --Leibniz 

 

If Pythagoras had a guitar, it might have looked like this: 

 

 
 

We assume that Pythagoras was a large man, so the length of the strings from the bridge to the nut is 1 m, as shown. 

 

The second string of six from the top is conventionally tuned to A two octaves below concert A. This is often 

written as A2, and has a frequency of 110 Hz. 

 

The notes of an A scale starting at A2 are: A2 – B2 – C3# - D3 – E3 – F#3 – G#3 – A3. Here are the frequencies of 

these notes in a Pythagorean tuning; also shown are the frequencies of the notes in an equally tempered tuning 

which is more common today. 

 

Note 
Pythagorean Tuning 

(Hz) 

Equally Tempered (Hz) 

A2 110.00 110.00 

B2 123.75 123.47 

C3# 139.22 138.59 

D3 146.67 146.83 

E3 165.00 164.81 

F3# 185.63 185.00 

G3# 208.83 207.65 



A3 220.00 220.00 

 

 

You will need to know that, as discussed in the textbook, the speed of a 

traveling wave on string with tension Ts is 

 


s

string

T
v   

where  is the string’s mass-to-length ratio 

 

L

m
  

Note that the speed is independent of the frequency. 

 

To the right are shown the first four normal modes of a vibrating 

string. 

 

Here is a link to a simple Flash animation that shows the actual motion 

of the string for the first three normal modes: 

 

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/sta2fix.html 

 

A. When the second string from the top is playing the note A2 = 110 Hz the frequency f of the first normal 

mode is also 110 Hz. What is the wavelength of the first normal mode? What is the speed of a traveling 

wave on the string? Explain why increasing the tension in the string increases the frequency of the note the 

string plays. 

B. What is the wavelength of the second normal mode of the string? What is the frequency of the standing 

wave? 

C. If you place your finger just to the right of the 12th fret the effective length of the string becomes 0.5 m, as 

shown in the figure. What is the wavelength of the first normal mode, and the frequency? What musical note 

is the string playing? How do your values compare to your result for Part B? Explain. 

D. If you place your finger just to the right of the 7th fret the effective length of the string becomes 2/3 m, as 

shown in the figure. What is the wavelength of the first normal mode and the frequency? What musical note 

is the string playing? Explain. 

E. Is there a pattern between the positions of the labeled frets in the figure of the guitar and the notes of the A 

scale in a Pythagorean tuning? What is the pattern? Are the lengths shown in the figure rational or irrational 

numbers? You may wish to know that if the guitar frets were set up to be equally tempered, except for the 

12th fret the lengths would not be rational numbers. 

F. As indicated in the table, the frequencies of the notes in a scale are slightly different in the Pythagorean 

tuning and the equally tempered tuning commonly used today. You may see if you can hear the difference 

by listening to a scale played with the Pythagorean tuning in the file Pythagorean.mid and a equally 

tempered tuning in EqualTempered.mid; both files are located at 

Feynman:public/Modules/Waves. You may also wish to explore further at: 
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Temperament/Temperament.html 

 

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/sta2fix.html
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/Temperament/Temperament.html


Activity 8 

 

 

At some position two sound waves have the form: 

 

 
1 1

2 2

sin( )

sin( )

D a t

D a t








 

 

They have the same amplitude a and different angular frequencies 1  and 2 .  In terms of the frequencies f1 and f2, 

the two waves have the form: 

 

1 1

2 2

sin(2 )

sin(2 )

D a f t

D a f t








 

 

The superposition of the two waves is: 

 

 
tot 1 2

avg( )sin( )

D D D

A t t

 


 

where:  

 

 

1 2
avg

mod

1 2
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2

( ) 2 cos( )

2

A t a t

 



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

 

 

The amplitude of the wave, A(t), is  modulated by the modulation angular frequency mod . 

 

In terms of the frequencies the above relations become: 

 

 tot avg( )sin(2 )D A t f t  

 

where: 

 

 

1 2
avg

mod

1 2
mod

2

( ) 2 cos(2 )

2

f f
f

A t a f t

f f
f











 

 

A. If the frequencies of the two waves are close to each other you will perceive a wave with frequency avgf  

whose amplitude is varying with a beat frequency beat mod2f f . Say that the two waves have frequencies 

of 510 Hz and 512 Hz. Then you will hear a sound wave with frequency 511 Hz with a beat frequency of 2 



Hz.  In your own words, explain why the beat frequency is double the modulation frequency. 

 

B. If the frequencies of the two waves are far apart, many but not all people will perceive an additional sound 

whose frequency is related to the difference in the two frequencies.  Say that the two waves have frequencies 

of 220 Hz and 330 Hz.  What is the frequency of the perceived sound? Explain.  There are two audio files 

which you may use to see whether or not you hear the additional sound, one in .wav format and the other in 

.mp3. They are both named 330_220Hz_mix and are located at 

Feynman:public/Modules/Waves. 

 

 

 

 

 

 

 

 

 

Activity 9 

 

 

As investigated in Activity 4, we can think of a sound wave two different ways: 

 

1. A pressure wave. The pressure oscillates around atmospheric pressure. 

2. A displacement wave. The displacements of the air molecules oscillate around their equilibrium positions. 

 

These two waves are 90 degrees out of phase: when one has a maximum or minimum the other is at zero amplitude. 

 
 

You will want to know that microphones measure the pressure wave. You will also want to know that the accepted 

value of the speed of sound is: 

 

331 0.61 (m/s)acceptedv T   

 

where T is the temperature of the air in Celsius. 

 

In this Activity you will set up standing sound waves in a tube filled with air and determine the speed of sound.  

 



The Apparatus 

 

The apparatus is shown on the next page. The loudspeaker generates the sound wave. The rod inside the tube has a 

small microphone mounted on the end, so the sound wave inside the tube can be measured at different positions. 

 

 

 
 

 

The figure below shows a close-up of the left side of the apparatus. 

 

 
 

 



The gray box in the lower-right corner is the Sound Tube Microphone Amplifier. It is connected to the Analog 

Sensor A connection on the Data Acquisition Device. The connector on the top of the box labeled SPK is connected 

to the loudspeaker, and the connector labeled MIC is connected to the microphone. 

 

The Software 

 

The Sound_vs_time program both drives the loudspeaker and measures the output from the microphone.  Here 

is a screen shot of the software. 

 

 
 

To use the software for this Activity: 

 

 Click on Acquire Data in the upper-left corner.  The button will turn green as shown. 

 Click on Function Generator just below the Acquire Data button.  It too will turn green as shown. This 

causes the loudspeaker to begin generating a sound wave. 

 Choose a Sine Wave as the Signal Type 

 Adjust the frequency of the sound produced by the loudspeaker with the Frequency knob and the control just 

below the knob. 

 

The plot on the right is what the microphone measures.  It is a plot of wave displacement versus time.  You will be 

interested in the amplitude of the wave, which is about 1.5 V in the screen shot. 

Getting a Standing Wave in the Tube 

 

The most challenging part of this Activity is getting a standing wave set up in the tube. The actual tube differs from 

the ideal case because of a number of factors: 

 

 The cone of the loudspeaker is moving back and forth, so is only approximately a closed end. 



 The sound wave will reflect off the rod, the hole in the right hand side barrier, etc. This means that you are 

unlikely to measure nodes that have exactly zero amplitude. Instead the amplitude at the nodes will only be 

close to zero but will be much less than the amplitude at the antinodes. 

 

Here are some tips for getting a standing wave. You may wish to repeat some of the steps as you get closer and 

closer to a good standing wave. 

 

 Step 1: When a standing wave is established, this is called resonance, and you will be able to hear that the 

sound that leaks out of the tube is louder than for a non-resonant condition. 

 Step 2: Place the microphone at the closed end of the tube.  Slowly adjust the frequency so that you get a 

maximum amplitude from the microphone. 

 Step 3: Place the microphone at a node, and slowly adjust the frequency so that you get a minimum 

amplitude from the microphone. 

 

For each standing wave that you study, be sure to record the range of frequencies for which you can not see any 

difference in the quality of the standing wave.  This will determine the error in your value of the frequency. 

 

Be careful not to push the Sound Sensor all the way into the speaker, 

as the speaker is made of paper!   
 

Preliminary Parts 

 

When the tube is closed at both ends, the possible displacement 

standing waves are the same as those for a standing waves on a string that 

is fixed at both ends: there is a node at each end of the tube. The figure 

to the right shows the first four possible standing waves. These are the 

same standing waves that for a string we called normal modes in 

Activity 7, and in fact this is the same figure that appears there! 

 

A. What are the wavelengths of the shown standing 

waves? What is the wavelength of the m = 5 standing 

wave which is not shown? Generalise to a formula for 

the wavelengths for any value of m. 

B. For the first two or three displacement standing 

waves, sketch the corresponding pressure standing 

wave. 

 

Here is a link to a simple Flash animation that shows the displacement wave for the first three standing waves: 

 

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/sta2fix.html 

 

The Main Part 

 

With the removable barrier in place so that the tube is effectively closed at both ends, get a standing wave in the 

tube.  The stand that supports the rod straddles the metre stick. As you move the microphone from the nodes and 

antinodes of the standing wave, the distances between them can be determined by the position of the stand relative 

to the metre stick. 

 

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/sta2fix.html


For a given node or antinode you will want to note how much you can vary the position of the microphone and not 

see any difference in the amplitude of the standing wave. This will allow you to determine the error in the position, 

which will allow you to determine the error in your determination of the wavelength   of the sound wave. 

 

Knowing the wavelength and frequency f of the standing wave you can calculate the speed of sound v from 

 

 f v   

 

In your determination of the wavelength, you should think about how to get the most precise value, i.e. how to 

minimize the error in your value.  Should you just measure the distance from an antinode to the next node, or from 

an antinode to the next antinode, or from the first antinode on the right of the tube to the furthest antinode on the left 

or the tube or …? 

 

Determine the speed of sound for a few different standing waves of different frequency. 

 

C. What is your final value of the speed of sound?  

D. How does your value for the speed of sound compare to the accepted value which is given near the 

beginning of this Activity? 

Tube Open on One End 

 

When one end of the tube is open to the air, the standing waves that are possible are the same as those for a 

vibrating string with one loose end. Here are some of these displacement standing waves for a tube closed on the 

left and open on the right: 

 

 
 

These standing waves occur because part of the incident sound wave is reflected from the open end of the tube. 

However, the effective reflection point of the wave is not the exact position of the open end of the tube but is 

slightly beyond it, and so the effective length of the tube is greater than its real length: 

 

LLL realeffective   

where: 

 

DL 3.0  

 

and D is the diameter of the tube. Sometimes effectiveL  is called the acoustic length. 

 

Here is a link to a simple animation that shows the first three standing waves: 

 

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/sta1fix.html 

 

Remove the barrier from the end of the tube and establish a standing wave. 

 

E. Determine the effective length of the tube. How well do your measurements agree with the above equation? 

F. If someone designs a pipe organ without being aware of the acoustic length, what will be the consequences? 

 

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/sta1fix.html


 

 

Activity 10 

 

 

If the apparatus of Activity 9 were perfect, then when the tube is closed on both ends we would not hear any sound 

outside the tube. Similarly, if the air inside the tube were perfect, all molecule-molecule collisions would be 

perfectly elastic; this means that as a sound wave travels through the air none of its energy would be converted to 

heat energy of the air. However, neither the apparatus nor the air is perfect, The Quality Factor Q measures the 

degree of “perfection” of the system. 

 

Say we have a standing wave when the frequency is 0f . For frequencies close to the "resonant frequency" 0f  the 

amplitude A of the sound wave at the position where there was an maximum in the pressure wave is given by: 

 















f
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o

o
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2

o   

 

Note in the above that the amplitude A(f) is equal to 0A  when the frequency f is equal to the resonant frequency. 

 

shows A(f) for 0A  equal The figure to the right 

to 1, Q equal 2, and for a resonant frequency of 50 

Hz. Note that we have indicated the width of the 

curve where the maximum amplitude is 

2/1  times the maximum amplitude 0A . 

 

A nearly trivial amount of algebra shows that the 

amplitude A is 2/1  times the maximum 

amplitude 0A  for positive frequencies when the 

frequency is: 

 

    )141(
2
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Q

f
f  

 

Thus, if the width of the curve is f , then Q is: 

 

     
f

f
Q


 0  

 

A. For a given resonant frequency 0f  how does the width of the curve of amplitude versus frequency depend 

on the Quality Factor Q? 

B. When the Quality Factor Q is zero, the maximum amplitude 0A  is zero. When Q is infinite so is the 

maximum amplitude. Explain. 



C. Close the tube at both ends and adjust for a standing wave in the range of 200 Hz - 1 kHz. Place the 

microphone at a maximum in the pressure wave and take data for the amplitude as a function of frequency 

for frequencies close to the resonant frequency. Calculate the Quality Factor of the tube. 

 

 

 

Activity 11: Waves on a String – First Experiment 
 

Open the ‘Vibrating String’ software package.  The apparatus should be setup similar to 

the picture below. For this activity make sure to use the nylon orange string. Set the 

amplitude apparatus at maximum by turning the black knob on the grey box. 

ATTENTION: When the vibrating metal bar starts hitting the edges making a noise, turn 

the amplitude slightly down just until the noise stops. 
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A. Hang a 100 gram mass on the end of the string near the pulley and set the frequency to 

very low. (e.g. 5 to 10 Hz). Gradually increase the frequency until the amplitude of the 

wave changes dramatically indicating that you have reached a resonance (maximum 

amplitude). How does the amplitude change with the change in frequency (qualitative 

observation)? (Make sure the TA agrees that you have found a resonance. The most 

common problem for this activity is difficulty in noticing a resonance) 

B. Make a table in your lab book similar to the one below. Find four resonances (maximum 

amplitude) in a closed-closed end standing wave pattern, starting from the first resonance, 

and measure the distances between consecutive nodes to fill in the first two columns of 

your table. Be sure to draw the shape of each standing wave in your notebook. 

Hanging 

mass 

 
 Frequency 

(Hz) 

Distance 

between 

nodes 

(meters) 

Wavelength 

(meters) 

Speed of 

wave (m/s) 

1     

2     

3     

4     



C. Calculate the wavelength and wave speed for each of the standing waves to complete the 

table in your lab notebook. Find the average of these wave speeds. 

 

D. Determine the mass density of the string. Use this to calculate the theoretical wave speed value. 

Compare the average speed found above to the theoretically predicted speed value. Are they 

similar? Why or why not? 
 
 
 

Activity 12: Waves on a String – Second Experiment     
Open the ‘Vibrating String’ software package.  The apparatus should be setup similar to 

the picture below. For this activity make sure to use the white/green fishing line. Set the 

amplitude apparatus at maximum by turning the black knob on the grey box. 

ATTENTION: When the vibrating metal bar starts hitting the edges making a noise, turn 
the amplitude slightly down just until the noise stops. 

 

1. Using hanging masses of 50gr, 100gr, 150gr, vary the frequency to give a closed-closed 

end standing wave pattern. Fill out the following table in your lab notebook: 
 

Mass (kg) Tension 

(N) 

Freq. 

(Hz) 

Distance 

between 

nodes (m) 

v (m/s) v2 (m2/s2) 

      

      

      
 

2. Make a plot of v
2 

vs. T (where T is the Tension) from the results in your table. What is 

the physical meaning of the slope? 

 
3. How does your measured slope compare with the theoretical value? 

 
 

 

500 gram mass 
 
 

 
  

 

 

 

 
 

Generator 

 

Amplitude 

Apparatus 

 

String 

 

Pulley 

 

Hanging 

Mass 

 



 

 
This Student Guide was written by David M. Harrison, Dept. of Physics, Univ. of Toronto in the Fall of 
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The Java applet used in Activities 1, 5 and 6 was written by the Physics Education Technology (PhET) 

group at the University of Colorado, http://phet.colorado.edu/index.php. Retrieved November 9, 2008. 

 

The figure of normal modes of a vibrating string in Activity 7 is slightly modified from Figure 21.22 of 

Randall D. Knight, Physics for Scientists and Engineers, 2nd edition (Pearson Addison-Wesley, 2008), 

pg. 640. The same figure is used in Activity 9. 

 

The Pythagorean and equally tempered scales used in Activity 6 are from Wikipedia, 

http://en.wikipedia.org/wiki/Pythagorean_tuning. Retrieved November 15, 2008. 

 

Activities 9 and 10 are based on a Student Guide written by David M. Harrison in October 1999 and 

revised in June 2001. 
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